SIRT1 Deacetylates FOXA2 and Is Critical for Pdx1 Transcription and β-Cell Formation

نویسندگان

  • Rui-Hong Wang
  • Xiaoling Xu
  • Hyun-Seok Kim
  • Zhen Xiao
  • Chu-Xia Deng
چکیده

Pancreas duodenum homeobox 1 (PDX1) is essential for pancreas development and β-cell formation; however more studies are needed to clearly illustrate the precise mechanism regarding spatiotemporal regulation of Pdx1 expression during β-cell formation and development. Here, we demonstrate that SIRT1, FOXA2 and a number of proteins form a protein complex on the promoter of the Pdx1 gene. SIRT1 and PDX1 are expressed in the same set of cells during β-cell differentiation and maturation. Pancreas-specific disruption of SIRT1 diminished PDX1 expression and impaired islet development. Consequently, SIRT1 mutant mice develop progressive hyperglycemia, glucose intolerance, and insulin insufficiency, which directly correlate with the extent of SIRT1 deletion. We further show that SIRT1 interacts with and deacetylates FOXA2 on the promoter of the Pdx1gene, and positively regulates its transcription. These results uncover an essential role of SIRT1 in β-cell formation by maintaining expression of PDX1 and its downstream genes, and identify pancreas-specific SIRT1 mutant mice as a relevant model for studying insulin insufficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells

OBJECTIVE The transcription factors (TF) Foxa2 and Pdx1 are key regulators of beta-cell (β-cell) development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY), pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mou...

متن کامل

Foxa2 Controls Pdx1 Gene Expression in Pancreatic -Cells In Vivo

Differentiation of early foregut endoderm into pancreatic endocrine and exocrine cells depends on a cascade of gene activation events controlled by various transcription factors. Prior in vitro analysis has suggested that the forkhead/winged helix transcription factor Foxa2 (formerly HNF-3 ) is a major upstream regulator of Pdx1, a homeobox gene essential for pancreatic development. Pdx1 is als...

متن کامل

SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro

Sirtuin 1 (SIRT1) regulates adipocyte and osteoblast differentiation. However, the underlying mechanism should be investigated. This study revealed that SIRT1 acts as a crucial repressor of adipogenesis. RNA-interference-mediated SIRT1 knockdown or genetic ablation enhances adipogenic potential, whereas SIRT1 overexpression inhibits adipogenesis in mesenchymal stem cells (MSCs). SIRT1 also deac...

متن کامل

Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development.

The onset of pancreas development in the foregut endoderm is marked by activation of the homeobox gene Pdx1 (IPF1). Pdx1 is essential for the expansion of the pancreatic primordium and the development of endocrine islets. The control of Pdx1 expression has been only partially elucidated. We demonstrate here that the winged-helix transcription factors Foxa1 and Foxa2 co-occupy multiple regulator...

متن کامل

SIRT1 Mediates FOXA2 Breakdown by Deacetylation in a Nutrient-Dependent Manner

The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013